Система управления техникой с применением технологии VR

Глушков Максим Алексеевич, студент 4го курса
Попова Мария Михайловна, преподаватель спецдисциплин
Государственное бюджетное профессиональное образовательное
учреждение Кемеровский горнотехнический техникум (ГБПОУ КГТТ)

Строительство — это процесс создания зданий, строений и сооружений. Современные строительные работы обязательно проходят с использованием специальной техники. В настоящее время наиболее перспективным подходом по повышению эффективности работы машин в строительстве являются системы управления техникой. Мною представлен вариант новой системы управления техникой с применением новейшей технологии виртуальной реальности. Проведен анализ предложенного решения, сформулированы выводы.

Ключевые слова: строительство, система управления техникой, технология виртуальной реальности, VR, HTC VIVE Cosmos.

Строительство – это процесс создания зданий, строений и сооружений. Современные строительные работы обязательно проходят с использованием специальной техники. В настоящее время наиболее перспективным подходом по повышению эффективности работы машин в строительстве являются системы управления техникой. Мною представлен вариант новой системы управления техникой с применением новейшей технологии виртуальной реальности. Проведен анализ предложенного решения, сформулированы выводы [1].

Система управления техникой — это система контроля положения рабочего органа машины (отвала бульдозера или грейдера, ковша экскаватора, выравнивающей плиты асфальтоукладчика и т.п.) по высоте и уклону [2].

Современные технологии не стоят на месте, давая все новые и новые возможности решения ранее поставленных задач.

Технология виртуальной реальности – перспективное направление, позволяющее «прикоснуться» К виртуальному предмету лаже взаимодействовать с ним. Технология была разработана еще в 70х годах, новую жизнь она получил только в последние несколько лет за счет стремительного развития компьютерной техники И вычислительных мощностей.

Несмотря на то, что данная технология применяется преимущественно в игровой индустрии, в промышленности такой подход также используется. На крупных предприятиях, в рамках учебных классов, уже долгие годы применялись компьютерные игровые технологии, к примеру, для симуляции аварийных ситуаций. Технология VR стала развитием данного подхода и позволило учащимся погрузиться в процесс обучения [3].

Комбинация СУТ и технологии виртуальной реальности позволит поновому взглянуть на проблему и открыть новые возможности в строительстве. Соответственно, целью работы является разработка сначала индикаторной, а затем автоматической 3D СУТ на основе новейшей технологии ВР.

Анализ проблемы

Существует множество разработок, касающихся СУТ и имеющих свои достоинства и недостатки, в той или иной степени влияющие на результативность и эффективность строительных работ. В ходе исследования был проанализирован ряд патентов. Недостатками подобных систем можно назвать:

- 1. Наличие большого количества дополнительного оборудования.
- 2. Необходимость в дополнительном обучении оператора для управления подобными системами.

- 3. Малая унификация. Одна и та же система требует серьезной переработки для использования на другом виде техники.
- 4. Нестабильность характеристик из-за применения аналоговых узлов, параметры которых зависят от условий эксплуатации (температура окружающей среды).
 - 5. Недостаточная отказоустойчивость.
- 6. Внедрение дополнительных управляющих звеньев или расширение набора датчиков потребует полной переработки аппаратуры системы управления.
 - 7. Фиксированный алгоритм управления.

Проведя анализ имеющихся решений СУТ можно сделать вывод, что предлагаемое технологическое решение должно решать часть проблем разработанных ранее систем.

Описание предлагаемого метода

Предлагаемый метод опирается на современные технологии виртуальной реальности. В качестве блока управления техникой выступают представленные в начале 2019 года очки виртуальной реальности HTC VIVE Cosmos.

Данные очки выбраны как наиболее перспективные и из-за наличия представительства компании HTC в России.

Моя разработка заключается в том, что очки виртуальной реальности будут использоваться как дистанционный блок управления для строительной техники. На технику будут установлен набор камер (в случае индикаторной системы) и блок управления (в случае полуавтоматизированной системы). Вся информация о проведении работ, положении рабочего органа и отметках будет транслироваться в шлем оператора. Он сможет в реальном времени управлять техникой на расстоянии без каких-либо ограничений и неудобств.

Достоинства и недостатки

В ходе первичного анализа было выявлено, что разработанное решение имеет целый ряд преимуществ:

- 1. Визуализация в реальном времени, и как следствие полная наглядность.
 - 2. Ускорение взаимодействия с техникой.
 - 3. Поддержание физического тонуса оператора.
 - 4. Быстрое обучение использованию программным обеспечением.
 - 5. Дешевизна по сравнению с другими комплексами.
 - 6. Перспективы при ведении работ в особо сложных условиях.
 - 7. Возможность применения СУТ на других видах техники.
- 8. Точная передача движений оператора за счет использования современных BP перчаток.
- 9. Достаточно высокая отказоустойчивость, поскольку большая часть работ происходит на стороне оператора.
- 10. Гибкий алгоритм управления за счет программного обеспечения и использования виртуальной среды.
 - 11. Интеграция дополнительных подсказок для оператора через АР.

Недостатками можно считать:

- 1. Необходимость в дополнительном пространстве помимо рабочего места.
- 2. В случае полуавтоматизированной системы, необходимость установки дополнительных механизмов на управления рабочим органом или техникой. Данный недостаток является ключевым для всех СУТ, которые интегрируются извне.
- 3. Ограниченное время работы в виртуальной реальности (зависит от физиологии оператора).
- 4. Новизна технологии, требующая базовых навыков работы в виртуальной реальности.
 - 5. Необходимость наличия специфических знаний у разработчика.

Выводы

Предложенная разработка позволяет по-новому взглянуть на СУТ и решает целый ряд проблем разработанных ранее СУТ. Многие проблемы, с которыми сталкиваются обычные СУТ уже решены в ВР. К таким проблемам относится позиционирование объекта и расчет расстояний. Данная технология уже используется в последней версии очков НТС Cosmos.

В заключении хотелось бы отметить, что комбинация системы управления техникой с технологией виртуальной реальности является закономерным и ожидаемым решением. Дальнейшим этапом разработки подхода станет анализ рынка и создание полноценного программнотехнического комплекса по СУТ. В дальнейшем планируется разработка индикаторной системы и, если удастся подобрать необходимое оборудование, переработать ее в полуавтоматическую.

Литература:

- 1. Градостроительный кодекс Российской Федерации (с изменениями на 3 августа 2018 года) (редакция, действующая с 1 января 2019 года) [Электронный ресурс]. URL: http://docs.cntd.ru/document/901919338 (дата обращения: 17.03.2019).
- 2. Что такое системы управления строительной техникой ГЕОСТРОЙИЗЫСКАНИЯ [Электронный ресурс]. URL: https://www.gsi.ru/art.php?id=584 (дата обращения: 17.03.2019).
- 3. Виртуальные тренажеры | Кузбасс-ЦОТ [Электронный ресурс]. URL: https://www.kuzbasscot.ru/services/virtual-nye-trenazhery/ (дата обращения: 21.10.2018).
- 4. Что такое виртуальная реальность: свойства, классификация, оборудование подробный обзор области [Электронный ресурс]. URL: https://tproger.ru/translations/vr-explained/ (дата обращения: 17.03.2019).